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An analytical formulation of conductivity bounds by Bergman and Milton is used in a different
way to obtain rigorous bounds on the real thermal conductivity of a fluid-saturated porous
material. These bounds do not depend explicitly on the porosity, but rather on two formation
factors — one associated with the pore space and the other with the solid frame.
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Bounds on various transport coefficients in heteroge-
neous media have been heavily studied now for over forty
years [1–3]. One of the more interesting developments
in this area has been the introduction of rigorous meth-
ods for developing bounds on complex constants (closed
curves in the complex plane), especially the dielectric
constant and conductivity of heterogeneous media [4–10].
These methods represent a great technical achievement
in this field, but they nevertheless can sometimes be diffi-
cult to apply to real data since they require high precision
and strong consistency among the data used in comput-
ing the bounds. In some cases it would be helpful for
applications if some simpler and perhaps more robust
methods and results were available.

In this Letter we consider the question of whether it is
possible to make use of the analytical methods in a differ-
ent way to find bounds on transport coefficients. We will
limit discussion here to real coefficients, taking thermal
conductivity as our main example, but the results apply
equally well to other transport coefficients including elec-
trical conductivity and fluid permeability [11]. Further-
more, the resulting bounds depend only on commonly
measured quantities in porous media called formation
factors [9, 12], and they show no unusual sensitivity to
measurement errors or any need for careful checking of
consistency relations among the measurements.

The Bergman-Milton [4–11] analytical approach to un-
derstanding some generic effective conductivity g∗ of two-
component inhomogeneous media shows that

g∗ = G(g1, g2) = g1G(1, 0) + g2G(0, 1) +

∫ ∞

0

dxG(x)
1
g1

+ x
g2

,

(1)
where G(1, 0) and G(0, 1) are constants depending only
on the geometry and G(x) ≥ 0 is a resonance density
also depending only on the geometry. The integral in
(1) is known as a Stieltjes integral [13]. Although the
representation (1) has usually been employed to study
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the behavior of g∗ in the complex plane when g1 and
g2 are themselves complex (corresponding to mixtures
of conductors and dielectrics), we will restrict consider-
ation here – as Bergman did in his early work [4] – to
pure conductors so that g1, g2, and g∗ are all real and
nonnegative.

In the limit that one or the other of the two con-
stituents is a perfect insulator (gi = 0), or in the more
common case when one of the constituents is much more
strongly conducting than the other, we can define two
quantities called formation factors [12] by

lim
g1→∞

g∗

g1
= lim

g1→∞
G(1, g2/g1) = G(1, 0) =

1

F1
, (2)

and, similarly, by

lim
g2→∞

g∗

g2
= lim

g2→∞
G(g1/g2, 1) = G(0, 1) =

1

F2
. (3)

In a porous material, where solid and pore fluid are each
continuously connected throughout the material, both
formation factors are finite, and both satisfy F ≥ 1. The
more commonly measured quantity of this type is the
electrical formation factor for the continuous fluid com-
ponent. This measurement has some possible complica-
tions due to surface conductance [14, 15], but it is usu-
ally not contaminated by conductance through the bulk
solid material because most rock grains can be correctly
assumed to be electrically insulating to a very good ap-
proximation. Since the formation factor is strictly a mea-
sure of the microgeometry of the heterogeneous medium,
it is the same number (except for those possible compli-
cations already mentioned of surface electrical conduc-
tion [14, 15], which can be eliminated whenever necessary
by known experimental methods) for all mathematically
equivalent conductivities. For this presentation, we will
use F1 to represent this formation factor associated with
the pore space. On the other hand, for thermal conduc-
tion the rock grains are the most highly conducting com-
ponent and the pore fluids tend to be much more poorly
conducting – especially so in the case of saturating air.
So we will take F2 to be this formation factor associated
with the solid frame of the porous material.
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To obtain some useful bounds, we again consider the
form of (1)

G(g1, g2) =
g1

F1
+

g2

F2
+

∫ ∞

0

dxG(x)
1
g1

+ x
g2

. (4)

For reasons that will become apparent we want to com-
pare the values of G(g1+2g0, g2+2g0) and G(g1, g2)+2g0,
where g0 can take any positive value, but g0 is limited in
the negative range by the limitations that both g1 + 2g0

and g2 + 2g0 must always be nonnegative. A straightfor-
ward, but somewhat tedious calculation shows that

G(g1 + 2g0, g2 + 2g0) − G(g1, g2) − 2g0 =

2g0(g2 − g1)
2
∫ ∞

0
dxxG(x)

(1+x)(g2+xg1)[g2+xg1+2(1+x)g0]
.

(5)
The right hand side of this equation is always positive
whenever g0 > 0 and g1 6= g2. It vanishes when g0 = 0
or g1 = g2. If g1 < g2, then for negative values of the
parameter g0, allowed values of g0 lie in the range 0 >
2g0 ≥ −g1. For such values of g0, the right hand side of
(5) is strictly negative.

The limiting case obtained by taking 2g0 → −g1 is
most useful because, in this limit, G(g1+2g0, g2+2g0) →
(g2 − g1)/F2 — thus eliminating the unknown functional
G(x) from this part of the expression. Then, (5) shows
that

G(g1, g2) ≥ g1 +
g2 − g1

F2
≡ S2(g1, g2), (6)

which is a general lower bound on G(g1, g2) without any
further restrictions on the measurable quantities g1 ≤ g2,
and F2.

A second bound can be obtained (again in the limit
2g0 = −g1) by noting that

∫ ∞

0

dxxG(x)

(1 + x)(g2 + xg1)
≤

∫ ∞

0

dxG(x)

g2 + xg1
, (7)

and then recalling that

∫ ∞

0

dxG(x)

g2 + xg1
=

1

g1g2

[

G(g1, g2) −
g1

F1
−

g2

F2

]

. (8)

Substituting (7) into (5) produces an upper bound on
G(g1, g2). By subsequently substituting (8) and then re-
arranging the result, the final bound is

G(g1, g2) ≤ g2 +
g1 − g2

F1
≡ S1(g1, g2). (9)

Comparing (6) and (9), we see consistency requires
that

g1 +
g2 − g1

F2
≤ g2 +

g1 − g2

F1
(10)

must be true. Rearranging this expression gives the con-
dition

0 ≤ (g2 − g1)

(

1 −
1

F1
−

1

F2

)

, (11)
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FIG. 1: Comparison of the formation factor bounds (FF±),
the Hashin-Shtrikman bounds (HS±), and thermal conduc-
tivity data from Asaad [16]. Data are for sandstone sample
B.

the validity of which we need to check. In the limit g1 =
g2 = 1, a sum rule follows from (4), and from this we
have:

1 −
1

F1
−

1

F2
=

∫ ∞

0

dxG(x)

1 + x
≥ 0. (12)

This shows explicitly that (11) is always satisfied as long
as g2 ≥ g1. If this inequality g2 ≥ g1 does not hold, then
the sense of the bounding inequalities is changed, so the
expressions for the upper and lower bounds trade places.

When g2 = const and g1 varies (as would be expected
in a series of thermal conductivity experiments with dif-
ferent fluids in the same porous medium), then (6) and
(9) are both straight lines that cross at g1 = g2. The
general bounds are therefore

min(S1, S2) ≤ G(g1, g2) ≤ max(S1, S2), (13)

where S1 and S2 were defined in (6) and (9). [Note
that there is also another rather obvious lower bound
on G(g1, g2) obtainable from (4) by simply dropping the
term involving G(x). Although this bound has the same
asymptotic behavior as min(S1, S2), it is easy to see
(using the same arguments already presented) that this
lower bound is always inferior to min(S1, S2), so we need
not consider it here.]

Examples shown in Figures 1–3 make use of thermal
conductivity and electrical formation factor data from
Asaad [16]. Three different sandstones (labelled B, C,
D) were studied by Asaad, and several different sets of
experiments were performed on each. The Figures show
data from experiments B30, C10, C20, and D10. We
plot both the new formation factor bounds (FF) and the
Hashin-Shtrikman bounds (HS) based on volume frac-
tion information. A selection of the data is displayed in
all three cases. Electrical formation factor measurements
were made on all three samples (FB

1 = 12.0, FC
1 = 23.0,
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FIG. 2: Same as Figure 1 for sandstone sample C, including
two distinct data sets.
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FIG. 3: Same as Figure 1 for sandstone sample D.

FD
1 = 33.0). Frame formation factor can be determined

from measurements of thermal conductivity when the
pores are evacuated. But a value of effective grain ther-
mal conductivity must be found. Asaad [16] solved this
problem — using an extrapolation method — assuming
that a certain geometric mean approximation (which is
just a straight line on a log-log plot) when fit to the
data would then give an accurate estimate of the point
at which G(g1 = geff

2 , g2) ' geff
2 . Results displayed as

they are here on the log-log plots in Figs. 2 and 3 show
that Asaad’s method is in fact quite accurate for all these
data. Then, F eff

2 ' geff
2 /G(0, g2), and we find FB

2 = 13.5,
FC

2 = 15.9, FD
2 = 3.72. Measured porosity values were

φB = 0.220, φC = 0.158, φD = 0.126.
The results show an interesting common pattern in

all three examples. The Hashin-Shtrikman upper bound
is always smaller, and therefore a better/tighter bound,
than the upper FF bound. But the situation is more
complicated for the lower bounds. Near the point where
all the bounds cross, the lower Hashin-Shtrikman bounds
are just slightly better for higher values of gfluid, but sig-

nificantly better for the lower values. On the other hand,
far from this convergence point the lower FF bound is
clearly superior to Hashin-Shtrikman, both at quite high
and quite low values of gfluid. In fact this is not surpris-
ing since it is in these asymptotic regimes that the FF
bounds tend to become exact estimates. So a reason-
able conclusion we reach from these observations is that
the combination of the two Hashin-Strikman bounds and
the lower FF bound provides quite accurate estimates
of overall conductivity for the entire range of pore-fluid
conductivities.

Future work along these lines will be directed towards
improving the estimates obtained from the analytical
method by making more direct use of various known con-
straints on the resonance density G and its integral mo-
ments.
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